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Abstract

We investigate if asset return volatility is predictable by macroeconomic and financial

variables and shed light on the economic drivers of financial volatility. Our approach is

distinct due to its comprehensiveness: First, we employ a data-rich forecast methodology

to handle a large set of potential predictors in a Bayesian Model Averaging approach,

and, second, we take a look at multiple asset classes (equities, foreign exchange, bonds,

and commodities) over long time spans. We find that proxies for credit risk and funding

(il)liquidity consistently show up as common predictors of volatility across asset classes.

Variables capturing time-varying risk premia also perform well as predictors of volatility.

While forecasts by macro-finance augmented models also achieve forecasting gains out-of-

sample relative to autoregressive benchmarks, the performance varies across asset classes

and over time.
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1. Introduction

Financial volatility is a crucial input for risk management, asset pricing, and portfolio manage-

ment and it may exert important repercussions on the economy as a whole as evinced forcefully

by the recent financial crisis. It is therefore of primary interest to learn more about the economic

drivers of volatility in financial markets. In this paper, we empirically investigate whether infor-

mation in a broad set of economic variables measuring financial and macro conditions is helpful

in predicting future volatility. We provide a comprehensive analysis of volatility predictability

for several major asset classes in a data-rich forecasting framework. While our main focus is

on studying the determinants of equity market volatility drawing on a long-term dataset which

covers more than 80 years of data, we also consider volatility in foreign exchange, bond, and

commodity markets over shorter time spans.

Economic theory suggests that variables capturing time-varying risk premia are primary

candidates for understanding and forecasting volatility (Mele, 2007). This implies that return

predictors from the extant literature (e.g. valuation ratios for equities, yield spreads for bonds,

interest rate differentials for foreign exchange etc.) qualify as promising volatility predictors

as well. However, countercyclical risk premia in financial markets do not mechanically imply

countercyclical return volatility (Mele, 2007). Thus, it is worthwhile to investigate sources

of volatility predictability separately from return predictability. In addition, several return

predictors also have a direct theoretical link to volatility forecasting. For example, structural

credit risk models such as Merton (1974) imply that equity volatility increases when leverage

increases, so that higher market-wide leverage should be positively related to future stock return

volatility.

Using information in financial and macroeconomic variables to forecast volatility in financial

markets is not entirely new to the literature but is far from having received the same attention as

the predictability of asset returns (see e.g. Goyal and Welch, 2003, 2008; Cochrane and Piazzesi,

2005; Ang and Bekaert, 2007; Ludvigson and Ng, 2009; Lustig, Roussanov, and Verdelhan, 2010,

for recent contributions to return predictability). Moreover, while there is a vast econometric lit-

erature on pure time-series modeling and forecasting of volatility (see e.g. Andersen, Bollerslev,
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Christoffersen, and Diebold, 2006, for a recent survey), the empirical literature on the economic

drivers of volatility is still fairly scarce.1

The seminal paper on the economic determinants of equity market volatility is Schwert (1989).

While his findings point towards countercyclical movements of stock market volatility, the link

between volatility and economic activity is not found to be very strong from a statistical perspec-

tive. On a more positive note, Engle, Ghysels, and Sohn (2008) analyze the effect of inflation

and industrial production growth on daily stock return volatility, considering each macroeco-

nomic variable separately. They find that macro fundamentals do indeed matter for stock return

volatility. Diebold and Yilmaz (2010) consider a broad set of 40 international equity markets

and find that stock market volatility is cross-sectionally related to fundamental macroeconomic

volatility as measured by GDP volatility. In a recent paper, Paye (2012) studies equity volatility

predictability by macroeconomic and financial variables. His results suggest meaningful and

encouraging links between several economic variables and stock market volatility, whereas im-

provements in terms of out-of-sample forecast accuracy are found to be fairly modest.

It is rather difficult, however, to draw general conclusions from the extant literature on

financial volatility predictability by macroeconomic and financial state variables. Most authors

employ different sample periods, different forecasting models and methods, different predictors,

different forecast evaluation criteria, and almost exclusively focus on stock market volatility.

Another important aspect is that“model uncertainty” is neglected in this branch of the literature.

Model uncertainty is the ex ante uncertainty of an economic agent with regard to the right choice

of macro-finance variables that are best suited for volatility prediction. While theory provides

some motivation for why some economic variables might qualify as predictors, it offers little

guidance on which specific variable (or particular combination of variables) should enter the

forecasting model for volatility. In this paper, we consider a Bayesian model averaging framework

1Modeling and forecasting time-varying volatility has its foundations in the class of (G)ARCH models (Engle,
1982; Bollerslev, 1986). More recently, the literature has expanded substantially drawing on the concept of
realized volatility and high-frequency modeling (See, e.g. Andersen, Bollerslev, Diebold, and Labys, 2003). This
literature is typically interested in high-frequency movements of volatility and time series aspects, while this
paper is mainly interested in low frequency variation and its link to macroeconomic and financial conditions.
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which takes account of this model uncertainty.2 In essence, the approach we take is to let the

data speak about the usefulness of specific predictors.

The recent paper by Paye (2012) comes closest to ours in that it also models realized volatility

in a predictive regressions setting. In this paper we go beyond Paye’s work in several regards.

First, we study a larger set of macro-finance predictors (38 as opposed to 13). Second, we go

beyond equity market volatility to consider other major asset classes such as foreign exchange,

bond markets and commodities for which (to the best of our knowledge) the economic determi-

nants of volatility have not been systematically analyzed before. Third and most important, we

explicitly consider the effects of model uncertainty when dealing with a large number of potential

predictors. We do this by a Bayesian model averaging (BMA) approach which has been shown

to be an adequate tool for stock return and exchange rate predictability (see e.g. Avramov, 2002;

Wright, 2008) and we show its virtues for studying the economic determinants of volatility as

well.3 This allows us also to go beyond näıve forecast combination approaches and to consider

optimal Bayesian foreacsts for out-of-sample forecasting. In a nutshell, it is the comprehensive

approach, both in terms of scope as well as in terms of the applied econometric methodology,

which is the unique feature of this paper.

Understanding volatility movements is important since it is a consequential input for in-

vestment and asset allocation decisions. Moreover, understanding the macroeconomic causes of

financial market volatility is interesting in itself since it helps to uncover linkages between price

movements in financial markets and underlying risk factors or business cycle state variables.

This is even more important since there is a growing body of evidence showing that risks asso-

ciated with volatility are priced in option, stock, bond, and foreign exchange markets (e.g. Ang,

Hodrick, Xing, and Zhang, 2006, Da and Schaumburg, 2009, Menkhoff, Sarno, Schmeling, and

Schrimpf, 2012, Christiansen, Ranaldo, and Söderlind, 2011 among others). Volatility-based

measures have also been shown to predict future stock market returns (see, e.g., Bollerslev,

2BMA is originally due to Leamer (1978). For treatments of model uncertainty in financial forecasting setups
similar to this paper, see e.g. Avramov (2002), Cremers (2002), or Wright (2008); Faust, Gilchrist, Wright, and
Zakrajsek (2011) recently use a BMA approach to predict U.S. business cycle fluctuations by credit spreads.

3Independent contemporaneous work by Cakmakli and van Dijk (2010) also considers the issue of stock return
and volatility predictability based on many (macro-)economic variables. Unlike the Bayesian Model Averaging
framework considered here, the authors extract information from macroeconomic series by dynamic factor models.
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Tauchen, and Zhou, 2009). Furthermore, recent evidence in Mele (2008) and Fornari and Mele

(2010) shows that stock market volatility is informative about future business cycle fluctuations

so that a better understanding of the driving forces of financial volatility is important for pol-

icy makers and monetary authorities. In the same vein, Chauvet, Senyuz, and Yoldas (2010)

find that financial volatility helps predict future economic activity when they consider volatility

measures that cover both stock and bond markets.

Our results indicate that economic predictor variables add significant explanatory power in

our forecasting exercises. Importantly, these results hold when controlling for the informational

content in lagged asset return volatility. It is also important to point out that our main fore-

casting approach shows the strongest predictive ability for predictors that are associated with

time-varying risk premia, leverage, or financial distress. Default spreads, for instance, stand

out as useful predictors not only for equity market volatility but also for other asset classes.

Moreover, the most robust predictors include valuation ratios (e.g. dividend yields in case of

equity volatility), a measure of interest rate differentials vis à vis the U.S. (in case of foreign

exchange volatility), and a measure of funding market (il)liquidity and heightened counterparty

credit risk (the TED spread as in Brunnermeier, Nagel, and Pedersen, 2009) which matter for

several asset classes.

In a nutshell, our results therefore suggest that there are economically meaningful relations

between variables measuring financial conditions and future volatility of different asset classes.

Purely macroeconomic variables (as opposed to financial variables) hardly show up as impor-

tant predictors of financial volatility. These results are fairly robust to a number of additional

checks and methodological variations. Our findings on out-of-sample predictability show that

including macro-finance predictors are able to enhance the forecast performance relative to sim-

ple autoregressive benchmarks in particular in the case of forecast combination methods. These

improvements do not hold for all asset classes and sample periods uniformly, however, and,

as in the case of return predictability (Goyal and Welch, 2008; Timmermann, 2008), forecast

performance can vary strongly over time.

The remaining part of the paper is structured as follows. Section 2 describes the data, Section

3 details the econometric framework, Section 4 presents the empirical results, and Section 5
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concludes. Various additional results and details are delegated to an Online Appendix.

2. Data and Volatility Measurement

We base our main analysis on monthly observations of macroeconomic and financial variables

and realized volatilities computed from daily return observations. We focus on a long sample

for the U.S. equity market (represented by the S&P500), which runs from December 1926 to

December 2010, a total of 1,009 monthly observations.4 In addition, we also investigate a shorter

sample for all four asset classes which covers the period from January 1983 to December 2010.

The starting point of the shorter sample is guided by having a comprehensive and common

dataset for all asset classes, both in terms of predictors and dependent variables. Thus, in the

case of the short-term multi-asset class sample we have 366 monthly time series observations for

each variable.

2.1. Measuring Financial Volatility

The main variables of interest are volatilities of the different asset classes which serve as depen-

dent variables in our predictive regressions. We compute the realized variance for asset class

i in month t as the sum of squared intra-period (daily) returns:
∑Mt

τ=1 r
2
i;t;τ where ri;t;τ is the

τth daily continuously compounded return in month t for asset i and Mt denotes the number

of trading days during month t. In our empirical analysis, we define the realized volatility to

be the log of the square root of the realized variance since it is better behaved (i.e. closer to

normality) than the raw series:

RVi;t = ln

√√√√ Mt∑
τ=1

r2
i;t;τ , t = 1, ..., T. (1)

Realized volatility is an accurate proxy for the true, but latent, integrated volatility as the

number of intra-period observations becomes large (See, e.g. Andersen, Bollerslev, Diebold, and

Labys, 2003). We then proceed by using realized volatilities computed this way as observable

4We are most grateful to G. William Schwert for providing these data.

5



dependent variables (See, e.g. Andersen, Bollerslev, Christoffersen, and Diebold, 2006, for a

survey).

For the construction of realized stock market volatility (RVS,t) we compute the realized

volatility measure according to Eq. (1) based on daily returns on the S&P500. Realized bond

market volatility (RVB,t) is computed from returns on the 10-year Treasury note futures contract

traded on the Chicago Board of Trade (CBOT).5 In the same manner, we employ Standard &

Poor’s GSCI commodity index to construct our proxy for commodity market volatility (RVC,t).
6

Our construction of aggregate foreign exchange (FX) market volatility is somewhat less stan-

dard and draws on a portfolio approach for the global foreign exchange market as suggested in

recent work by Lustig, Roussanov, and Verdelhan (2011), among others. Hence, we use a basket

of currencies against the U.S. dollar for our main analyses. We do so to obtain an aggregate

measure of foreign exchange volatility (from the perspective of a U.S. investor) similar to the

aggregate stock market index, bond index, and commodity index we use for the other asset

classes. For robustness, however, we also report results for four major individual exchange rates

(German mark/euro, Japanese yen, British pound, and Swiss franc against the U.S. dollar) in

the Online Appendix. To construct the aggregate FX volatility measure we form an equally

weighted portfolio consisting of all currencies with available data at a given point in time.7 For

the aggregate FX portfolio we calculate the time series of the daily spot rate changes which are

then used to construct realized FX volatility (denoted by RVFX,t) according to Eq. (1).

5We use the daily closing price of the bond futures contract which is available from Datastream (mnemonic
symbol is CTYCS00(PS)). This is the contract used by Fleming, Kirby, and Ostdiek (1998) who consider volatility
linkages between equity and bond markets. The advantages of using futures data are that these contracts are
highly liquid and that we can compute bond returns straight away without having to rely on return approximations
based on yields.

6These data are available from Datastream. In place of the GSCI index, it may have been preferable to use
data on the GSCI futures contract as this is actively traded at the CME (See e.g. Fong and See, 2001). Yet, the
GSCI futures only start trading in 1992. Still, the correlation between the realized volatility for the GSCI index
and the GSCI futures amounts to 0.97 during the period 1992-2009, so we deem it reasonable to use the GSCI
index to obtain a longer time-series.

7The foreign exchange rates are available from Thomson Financial Datastream. We use the currencies of
the following countries (all quoted against U.S. Dollar): Australia, Austria, Belgium, Brazil, Bulgaria, Canada,
Croatia, Cyprus, Czech Republic, Denmark, Egypt, Euro area, Finland, France, Germany, Greece, Hong Kong,
Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands, New
Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South
Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine, and United Kingdom. Not all
currencies are available during the entire sample period, as some currencies enter or exit the sample.
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[Insert Table 1 about here]

Table 1 shows summary statistics for the realized volatility series. The average volatilities for

commodities and stocks are much larger than the average volatilities for foreign exchange and

bonds. The same holds for the standard deviations of the realized volatility series. As is well

known, realized volatility is highly persistent and we find this behavior for all four asset markets

under investigation as indicated by the autocorrelation coefficients.

[Insert Figures 1 and 2 about here]

Figures 1 and 2 plot our realized volatility measures for the different asset classes. The time

series are highly variable and they do not appear to follow an identical pattern across asset

classes. This is also reflected in the pair-wise correlation coefficients that are reported in Panel

B of Table 1 which are generally not very high in absolute terms, i.e. below 48%. Given this

heterogeneous behavior, one may suspect that the volatility of different asset classes is at least

partly driven by different economic variables.

2.2. Macroeconomic and Financial Predictors

Overall, we rely on a comprehensive set of 38 macroeconomic and financial predictive variables.

The results for the long-term sample period draw upon a reduced set of 13 predictors (indicated in

Table A.1) which are available as of December 1926. Since many of those variables are motivated

via the risk-premium channel by Mele (2007), there is some overlap with the predictive variables

used in the comprehensive study on stock return predictability by Goyal and Welch (2008).

Table A.1 provides an overview and summary statistics of the predictors whereas the Online

Appendix provides further details on data sources and construction.

The variables considered in this paper are motivated by theory, mostly focussing on the

time-varying risk-premium channel emphasized by Mele (2007). This implies that specifically

those variables that have been shown to be useful predictors of returns and hence drivers of

risk premia should qualify as potential predictors. Given the scope of our study with its multi-

asset class focus, we do not only consider popular forecasting variables for equity returns (such
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as valuation ratios, industrial production growth etc.) but we also take into account potential

drivers of countercyclical risk premia in other markets. In addition, we also consider variables

associated with market and funding (il)liquidity, heightened credit and counterparty risk, as one

may suspect that a specific variable capturing risk premia or market conditions in one market is

also influential for volatility in another market.8 For instance, during the recent financial crisis

stress in money markets quickly spilled over to affect market conditions and returns in other

asset classes (Baba, 2009). Our tests allow for such a possibility.9

In the following, we provide a brief overview and some further details regarding the motiva-

tion behind some specific variables. For ease of exposition, we classify the predictive variables

according to five broad economic categories:

(1) Equity Market Variables and Risk Factors: Our list of explanatory variables in-

cludes well-known equity market valuation ratios such as the dividend price ratio (D-P) and the

earnings-price ratio (E-P), commonly considered in predictive regressions for stock returns (e.g.

Campbell and Shiller, 1988; Goyal and Welch, 2008). We also include lagged equity market re-

turns (MKT) to capture the well-established leverage effect (Black, 1976; Glosten, Jagannathan,

and Runkle, 1993; Nelson, 1991), i.e. the finding that negative returns are associated with higher

subsequent volatility. Other equity variables include the risk factors by Fama and French (1993),

a short-term reversal factor (STR) which is related to market volatility and distress as analyzed

in Nagel (2012). We also consider S&P500 turnover (TURN), which is commonly viewed as a

proxy for difference in opinion (Scheinkman and Xiong, 2003; Baker and Wurgler, 2007) and

hence potential uncertainty about future market valuations.

(2) Interest Rates, Spreads, and Bond Market Factors: Our set of bond market variables

include variables for instance the T-bill rate (T-B) which has shown to be a useful predictor of

equity excess returns (e.g. Ang and Bekaert, 2007). In addition, we include prominent bond re-

turn predictors such as the term spread (Campbell and Shiller, 1991) and the factor by Cochrane

and Piazzesi (2005) based on the term structure of forward rates. These variables are intended

8We thank an anonymous referee for pointing this out.
9In unreported tests, we also tested if volatilities in one specific market Granger-cause volatilities in other

markets, so-called volatility spillover effects (See e.g. Diebold and Yilmaz, 2009). We do not find evidence for
these kinds of lead-lag relationships, which is most likely due to the low frequency of the data considered in this
paper.
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to capture the evolution of risk premia in bond markets.

(3) Foreign Exchange Variables and Risk Factors: We consider three foreign exchange

specific forecasting variables. The average forward discount (AFD) – which measures interest

rate differentials vis à vis the U.S. for a broad range of currencies – might be particularly useful

given the findings on its ability to capture countercyclical FX risk premia in Lustig, Roussanov,

and Verdelhan (2010). In addition, we also include the dollar risk factor (DOL) and a carry

trade factor (C-T) from Lustig, Roussanov, and Verdelhan (2011) which have been shown to

capture a large fraction of common FX return variation.

(4) Liquidity and Credit Risk Variables: To proxy for heightened credit risk we rely on

the yield spread between BAA and AAA rated bonds (often labeled the default spread, DEF).

Credit risk tends to be higher in situations where leverage rises, which – according to models

such as Merton (1974) – should influence volatility. Furthermore, we include the TED spread

(difference between the 3-month LIBOR rate and T-Bill rate), a common measure of funding

(il)liquidity in interbank markets (e.g. Brunnermeier, Nagel, and Pedersen, 2009). We also

consider an aggregate measure of bid-ask spreads in foreign exchange markets to proxy for FX

market (il)liquidity (Menkhoff, Sarno, Schmeling, and Schrimpf, 2012) as well as the measure of

stock market liquidity in equity markets by Pastor and Stambaugh (2003).

(5) Macroeconomic Variables: We also consider general macroeconomic variables, such as

inflation and industrial production growth (either computed in monthly or annual growth rates).

The latter variable is central in the recent return predictability of excess returns in bonds and

foreign exchange (see e.g. Ludvigson and Ng, 2009; Lustig, Roussanov, and Verdelhan, 2010).

Output-based measures have also been found to be successful predictors of equity returns (e.g.

Cooper and Priestley, 2009). Including these variables also allows us to assess if macroeconomic

conditions are causal (in a post hoc ergo propter hoc sense) for volatility or by contrast whether

causality runs the other way as emphasized in papers such as Fornari and Mele (2010) or Chauvet,

Senyuz, and Yoldas (2010).
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3. Econometric Framework

We now outline our econometric approach.10 Note that we use a univariate framework through-

out the paper which aims at predicting financial volatility for each asset class separately. We

use standard predictive regressions for the future realized volatility of asset i

RVi;t = α +
L∑
`=1

ρlRVi;t−` + β′jzj;t−1 + ut, (2)

where βj denotes the kj-dimensional vector of regression coefficients on the predictive variables

and i indexes the asset type. The subscript j indicates that the composition of the vector of

predictive variables zj;t depends on the particular model Mj. As we have a large number of

potentially relevant predictor variables, we investigate j = 1, ..., 2κ models, where κ denotes the

overall number of predictive variables under consideration.

Since volatility is fairly persistent, it is important to include autoregressive terms in the

predictive regression to investigate if there is additional predictive content of the macroeconomic

and financial variables that goes beyond the information contained in the time-series history of

volatility. We therefore also report results from fitting an autoregressive model for the RV series

as the relevant benchmark case. While we largely focus on one autoregressive lag (L = 1), we

also discuss models with higher order terms in Section 4.2 and report additional results in the

Online Appendix.

Since the number of potential models is very large, it is computationally infeasible to evaluate

all possible models analytically. With κ = 38 + 1 potentially useful predictive variables we have

239 = 549, 755, 813, 888 possible model specifications. Given these considerations, we rely on two

approaches in this paper. First, we make use of a Bayesian model averaging approach with a

stochastic model search algorithm (MC3). Second, we employ a model selection approach based

on information criteria. We detail these two approaches next.

10See e.g. Avramov (2002) and Ludvigson and Ng (2009) for related approaches in the literature on stock
return predictability and bond return predictability. Wright (2008) studies the predictability of exchange rates
in a similar data-rich forecasting environment.
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3.1. Bayesian Model Averaging and MC3

Our baseline results draw on a Bayesian model averaging (BMA) approach. We briefly outline the

approach in the following, while some further technical details are discussed in the Appendix. A

particularly attractive feature of the BMA approach is that model uncertainty can be addressed

in a coherent way. Results in the stock return predictability literature suggest that model

uncertainty can be substantial when forecasting returns, see for instance Avramov (2002) or

Schrimpf (2010). In our context, model uncertainty refers to a situation where it is not clear ex

ante what the important predictive variables might be or which combination of variables may be

useful for prediction purposes. Unlike the classical approach, BMA does not posit the existence

of a true model and is therefore particularly suited to deal with a setup where model uncertainty

plays a role. Moreover, the BMA approach can be used to obtain optimal weights for forecast

combination (See e.g. Timmermann, 2006). To handle the large number of potential models we

rely on Markov Chain Monte Carlo Model Composition (MC3), a sampling approach drawing

from the model space which is particularly suited for high-dimensional problems such as the

one encountered here (See, e.g. Fernandez, Ley, and Steel, 2001; Koop, 2003). We outline this

approach in section B.2 of the appendix. The results are based on 500,000 draws and a burn-in

period of 50,000 draws.

In the Bayesian framework it is common to derive posterior probabilities p(Mj|D) for a par-

ticular model, where different models are defined by inclusion or exclusion of specific explanatory

variables. These posterior model probabilities, which reflect the usefulness of a particular model

after having seen the data D, are used in the BMA framework as weights in a composite model:

E[β|D] =
2κ∑
j=1

p(Mj|D)βj|D, (3)

where βj|D denotes the posterior mean of the predictive coefficients in the jth model. Likewise,

combined forecasts of BMA can be obtained by weighting the forecasts of the individual models

by the corresponding posterior model probabilities. Thus, in line with the Bayesian tradition,

the data allow us to learn by updating our belief about the quality of a particular model. The

posterior model probability is given by

11



p(Mj|D) =
p(D|Mj)p(Mj)

Σ2κ
i=1p(D|Mi)p(Mi)

, (4)

where p(D|Mj) is the marginal likelihood and p(Mj) denotes the prior probability of model j

(as determined by inclusion and exclusion of specific predictive variables). The expression for

the marginal likelihood is obtained as

p(D|Mj) =

∫
p(D|Mj, βj)p(βj|Mj)dβj, (5)

where p(βj|Mj) refers to the prior on the parameters of model j and p(D|Mj, βj) is the likelihood

of the model.11

3.2. Model Selection Based on Information Criteria

For completeness, we provide comparisons to a classical model selection approach that neglects

model uncertainty. Given the large amount of predictors, some standard pretesting is necessary

before estimating and evaluating the different models. To this end, we reduce the initial set of

potential predictors by only considering variables with a t-statistic greater than two in absolute

value in a predictive regression containing the respective macro-finance predictor and the lagged

dependent variable. In this way, we end up with a smaller set of predictors such that an analytical

evaluation of all models is computationally feasible. This is a common approach and is also used

by e.g. Ludvigson and Ng (2009) in the context of bond return predictability. For each of the

different model specifications, the Schwarz Information Criterion (BIC) is computed. Then the

models are ranked according to the BIC. The BIC favors models that provide a good fit while at

the same time penalizing highly parameterized models. Our tables report estimation results for

the three best model specifications according to the BIC and we report coefficients, Newey and

West (1987) HAC standard errors with optimal lag length selection by Andrews (1991), and the

adjusted R2.

11We focus on a 1-month forecasting horizon in the paper since the Bayesian approach does not allow for longer
horizons with overlapping observations. However, we also consider longer horizons (based on quarterly data) with
detailed results reported in the Online Appendix (Table IA.8). These results do not yield much additional insight.
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3.3. Out-of-Sample Forecast Evaluation

We also evaluate how forecasting models augmented by macro-finance predictors perform in an

out-of-sample context. As a general rule, we always evaluate the out-of-sample performance of

the forecast against the benchmark forecast of an autoregressive model. We basically employ

the same procedure as in our in-sample tests but we now estimate our models recursively and

evaluate the resulting out-of-sample forecasts. More specifically, we start with an initialization

period, estimate predictive regressions in the same way as above to produce the first out-of-

sample forecast. We then expand the estimation window and repeat the above steps to obtain

out-of-sample forecasts for the next period and continue in this way until we reach the end of

the sample period. In the following, we denote the forecast by the macro-finance augmented

model by fMi,t+1 and the forecast of the autoregressive benchmark model by fBi,t+1.

We report Theil’s U (TU) which is given by the root mean square error (RMSE) of our

macro-finance augmented model relative to the RMSE of the benchmark model such that a value

smaller than one indicates that the model beats the benchmark in terms of forecast accuracy. In

addition, we report out-of-sample R2s as in Campbell and Thompson (2008). The out-of-sample

R2 is computed as

R2
OOS = 1−

∑T−1
t=R (RVi,t+1 − fMi,t+1)2∑T−1
t=R (RVi,t+1 − fBi,t+1)2

(6)

where T denotes the overall sample size, and R is the initialization period.

Besides these purely descriptive forecast evaluation criteria, we provide bootstrap-based sta-

tistical inference in order to assess if models augmented by macro-finance predictors significantly

outperform the benchmark forecast. Since the benchmark model is nested by the model of in-

terest, the asymptotic test put forth by Clark and West (2007) may be used. However, the

theoretical setup considered in Clark and West (2007) does not cover our case where the fore-

casts are generated by forecast combination and where a model search over a large amount of

models is conducted. Hence, we rely on a bootstrap approach instead of asymptotic tests.12 We

12We are grateful to Todd E. Clark for this suggestion. In a similar vein, Wright (2008) relies on a bootstrap
approach to evaluate the out-of-sample accuracy of BMA generated forecasts.
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provide a brief description of our bootstrap procedure in the Online Appendix. In addition, we

follow Paye (2012) and report results from the asymptotically valid test by Giacomini and White

(2006) which is computationally equivalent to the seminal test by Diebold and Mariano (1995).

Finally, we report Mincer-Zarnowitz (MZ) tests of unbiased forecasts (by regressing actual real-

ized volatility on a constant and the fM volatility forecast) and report results for a Wald test

of a zero intercept and unit slope coefficient. Our results are based on the GLS version of the

Mincer-Zarnowitz test suggested by Patton and Sheppard (2009).

4. Empirical Results

We first present in-sample results before moving on to out-of-sample forecasting accuracy.

4.1. In-Sample Analysis

Bayesian Model Averaging. We first present our baseline results for the long-term sample

of U.S. equity market volatility obtained by the BMA approach. The results are reported in

Table 2 which presents the eight best predictor variables in terms of posterior probability of

inclusion (π|D). The posterior probability of inclusion reflects the belief of how likely a variable

is included in the model after having seen the data. We start from a prior probability of inclusion

π of 0.5, which implies that every model is deemed equally likely a priori (Koop, 2003; Faust,

Gilchrist, Wright, and Zakrajsek, 2011). Hence, if π|D exceeds 0.5, our belief of the usefulness

of a particular economic variable as a predictor of volatility has been revised upwards in the

light of the evidence.13 In addition, we report posterior means and standard deviations as well

as Bayesian t-ratios. These t-ratios incorporate adjustments for model uncertainty and are thus

not comparable to classical t-statistics. We indicate by 1, if a specific predictor variable appears

in the top five models according to the posterior model probability p(Mj|D).

[Insert Table 2 about here]

13We also checked if alternative values for the prior probability of inclusion would alter our results, but did not
find that our results are much affected by alternative hyperparameter choices.
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As a first observation, we find that several macro-finance variables are included in the top

five models and/or have a posterior probability exceeding 0.5 so that it is useful to rely on their

informational content when forecasting volatility. As expected, the autoregressive component is

important and explains a large fraction of the variability of volatility.

In terms of economic effects, it is noteworthy that the two most important economic predictors

of equity market volatility are associated with the effects of leverage. Default spreads (DEF) tend

to widen when firm leverage and counterparty credit risk increases, a situation which precipitates

higher volatility. Moreover, low past equity returns are a useful and robust predictor of higher

subsequent equity market volatility. This is in line with the“leverage effect”emphasized by Black

(1976) and modeled explicitly by asymmetric GARCH models, e.g. Nelson (1991) and Glosten,

Jagannathan, and Runkle (1993). The earnings-price (E-P) ratio is typically considered to be

associated with time-varying risk premia, which are shown to be related to time-variation in

equity market volatility in Mele (2007). The economic effect we find implies that lower earnings-

price ratios (i.e. higher stock market valuations) are followed by periods of higher equity volatility

and vice versa, a finding which squares well with the notion of investor sentiment (see e.g. Brown

and Cliff, 2005; Baker and Wurgler, 2007) where overly optimistic investors drive up stock prices

to a level not warranted by fundamentals which is eventually followed by a sharp decline in stock

prices (and vice versa). Another important predictor is the short-term reversal factor, which has

been found to be related to (il)liquidity in Nagel (2012). On a daily frequency, the short-term

reversal return is positively related to the VIX and the return to supplying liquidity (Nagel,

2012). Table 2 shows that the predictive coefficient of the short-term reversal return is negative

in our monthly data which implies that high returns to supplying liquidity are negatively related

to future equity volatility. Given that we are working at lower frequency, it might be the case

that high returns to liquidity provision are quickly exploited on average so that a high short-term

reversal return is eventually followed by a decline in volatility.

[Insert Table 3 about here]

Table 3 shows results for the shorter sample period (1983-2010) for all four major asset

classes. The results are based on the full set of 38 macro-finance variables. While it is the case

that mostly market-specific variables show up as predictors of volatility of a particular market,
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it is interesting to note that there are some variables which emerge as common predictors across

asset classes. In particular, these variables are associated with money market stress and funding

(il)liquidity (see e.g. Brunnermeier and Pedersen, 2009; Brunnermeier, Nagel, and Pedersen,

2009). The TED spread is among the best forecasting variables for foreign exchange, fixed

income as well as equity market volatility, and is positively related to future volatility in all

three cases. This finding makes economic sense, since a higher TED spread signals higher

illiquidity and perceived counterparty risk, which in turn is known to be a driver of volatility

in financial markets. In a similar vein, the default spread (or credit spread) shows predictive

power for equity and bond markets. Again, this finding makes sense economically since higher

default spreads are associated with higher market leverage and the latter is a direct driver of

equity volatility (e.g. Merton, 1974). In addition, since higher perceived default risk typically

triggers portfolio rebalancing on behalf of investors, it is not surprising to see that the default

spread also moves bond volatility.

There are minor differences in the results for stock market volatility between the long sample

and the recent sample. Some differences are to be expected as the explanatory variables for the

long sample only comprise a subset of those for the recent sample. For the recent sample the

dividend-price ratio (D-P) rather than the earnings-price ratio seems to matter and the leverage

effect is less strong. Again, the TED spread and the default spread (DEF) show up as useful

predictive variables.

One noteworthy effect in the case of foreign exchange market volatility is the predictive

content of the average forward discount (AFD). As documented in Lustig, Roussanov, and

Verdelhan (2010), this variable, measuring the average interest rate differential vis à vis the

U.S., is associated with time-varying risk premia in FX markets. In fact, this variable is also

a primary and robust predictor of FX market volatility. Macroeconomic variables like money

growth, inflation, and output fluctuations also matter to some degree which seems comforting

given the weak link between these standard exchange rate fundamentals and first moments of
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currency returns (the so-called “disconnect puzzle”, see e.g. Obstfeld and Rogoff, 2000).14

Our results show that the term spread (T-S), a well-known bond return predictor (e.g. Camp-

bell and Shiller, 1991), is also among the best predictors for future bond market volatility. An-

other bond related variable, namely the default spread (DEF) also helps in predicting bond

volatility. Finally, the S&P500 turnover (TURN) has a bearing upon bond volatility. While

there does not seem to be a close theoretical link between stock market turnover and bond mar-

ket volatility in the earlier literature, one possibility for such effects may be portfolio rebalancing

on behalf of investors. Our results on commodity volatility again suggest that financial condi-

tions seem to matter most, whereas variables proxying for conditions in the real economy do not

matter that much in explaining financial volatility. On the other hand, model uncertainty seems

to be larger, such that the Bayesian BMA t-ratios are much lower compared to the other asset

classes and the economic relationships are less robust in vase of commodity market volatility.

In sum, the results suggest a close economic link between return and volatility predictability in

equity, foreign exchange and bond markets. The most successful predictors are those associated

with measures of funding market (il)liquidity and heightened credit risk as well as time-varying

risk premia. Macro variables like output fluctuations, news about the business cycle or inflation

only appear to be of minor importance.

Model Selection Approach. For comparison, Tables 4 and 5 report in-sample results based

on classical model selection for the long and recent samples, respectively. Results for the three

top-performing model specifications according to the BIC are tabulated.

[Insert Tables 4 and 5 about here]

There is a large degree of overlap between the important explanatory variables identified via

the BMA approach and the model selection approach. There is not much difference between the

predictive power of the best-performing models when measured by their adjusted R2s. Again,

14The results for the individual exchange rates are similar to the aggregate FX results and can be found in
the Online Appendix (see Table IA.3). The main difference is that the explanatory power is smaller for the
individual currencies than for the aggregate FX market volatility which makes sense since individual currency
pairs are subject to large idiosyncratic movements whereas our aggregate FX market volatility measure averages
over different currencies and, hence, provides a smoother time-series of movements in the value of the U.S. dollar.
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common predictors of volatility across asset classes are the TED spread and the default spread

(DEF). Asset specific measures, known to be useful to predict returns (e.g. AFD in case of

foreign exchange, Cochrane-Piazessi (C-P) factor, and term spread (T-S) for bonds) are the

most successful volatility predictors.

4.2. Benchmarks with Higher-Order Autoregressive Terms

To provide further evidence on the importance of macro-finance predictors for financial volatility,

we also present results for specifications where we allow for more autoregressive terms of volatility.

More specifically, we repeat our BMA and model selection exercises for the case where we

include up to three AR terms and let the data speak about the usefulness of these additional

autoregressive terms relative to our macro-finance predictors. The results in this section are

based on the long equity market sample since this sample seems best suited for an analysis like

this where a lot of power is needed to discriminate between alternative models. We present

results for the shorter samples in the Online Appendix (see Tables IA.2, IA.4, IA.5, IA.7).

[Insert Table 6 and Table 7 about here]

Tables 6 and 7 show results for both the BMA approach and classical model selection, re-

spectively. As can be seen from Table 6, allowing for more AR terms does not change our

main conclusions about the macro-finance predictors discussed above. The market excess re-

turn (MKT), the short term reversal (STR) factor, and the default spread (DEF) still show up

as the most important financial predictors with high posterior inclusion probabilities and large

BMA t-ratios (in absolute terms). Regarding the AR terms themselves, we find that they also

show up with high posterior inclusion probabilities, but that many financial predictors actually

dominate them in terms of posterior inclusion probabilities. Thus, including economic and finan-

cial information still seems valuable even after accounting for these higher-order autoregressive

terms.

We find very similar results for the classical model selection procedure. The top three models

all select the first two lags of realized volatility whereas the third autoregressive lag is selected

only in case of model (i) and (ii). However, we also find that all three top models select the market

18



return (MKT), the STR factor, and the default spread (DEF), and that predictive coefficients

for all three are highly statistically significant. In addition, the earnings-price ratio (E-P) shows

up in models (ii) and (iii). Hence, these results are very much in line with what we find for the

benchmark case with only one lag of volatility in Table 4 above.

4.3. Out-of-Sample Analysis

We proceed by investigating the out-of-sample (OOS) predictive power of macro-finance variables

for future financial volatility. This exercise seems interesting since it is relevant to know whether

market participants could usefully employ macro-finance information to improve their volatility

forecasts in a real-time setting. However, it should also be noted that performing OOS tests

also has drawbacks since it reduces the power of tests due to relying on shorter sub-samples (see

e.g. Inoue and Kilian, 2004). Hence, our in-sample tests are best suited to investigate whether

there is a link between macro-finance information and future volatility in the population whereas

the out-of-sample tests in this section are more suitable for investigating whether this link can

actually be exploited in real time.

Summary statistics for the evaluation of out-of-sample forecasts are reported in Tables 8

and 9. The out-of-sample forecasts are generated recursively with an expanding window.15 We

evaluate the out-of-sample forecast results based upon three types of model selection approaches

(best model according to BIC, AIC, and R2) as well as three variants of forecast combination

methods (BMA based on analytical evaluation of the models after trimming the set of predictors,

BMA weights from the MC3 sampling approach, and equal weights of the forecasts by all

evaluated models (EW)).16

To conduct inference on forecast accuracy, we also report bootstrap p-values to test if the

macro-finance augmented models outperform the benchmark in terms of mean square forecast

15We also checked the OOS performance based on rolling window schemes, which might be a better choice in case
of structural breaks (see e.g. Pesaran and Timmermann, 2007; Pesaran and Pick, 2009, on the tradeoff between
bias-reduction and efficiency when choosing estimation windows for forecasting). Our results indicate superior
results for expanding window schemes, which suggests that efficiency gains due to less estimation uncertainty
outweigh potential bias-reduction in the presence of structural breaks.

16For computational reasons, the number of Monte-Carlo draws for the MC3 algorithm in the out-of-sample
exercise is set to 1,000 as opposed to the in-sample results which are obtained with 500,000 draws.
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errors. We rely on a model-based wild bootstrap imposing the null of no predictability by

macro-finance variables as described in Section 3 and Appendix B.3. These bootstrap p-values

(#TUbs < TU) are computed as the proportion of Theil’s U statistics in the artificial bootstrap

samples that are smaller than the sample Theil’s U. Thus, these p-values are one-sided and test

the null of equal predictive performance against the alternative of superior performance of the

model including macro-finance predictors against the benchmark.

[Insert Table 8 about here]

OOS Predictability: U.S. Equity Market (Long-term): Table 8 reports out-of-sample

forecast evaluation results for the long-term U.S. equity sample for different starting values

for the first forecast (i.e. different lengths of the initialization periods). Models augmented

by economic variables generally tend to outperform a simple autoregressive benchmark. This is

corroborated by the bootstrap p-values and the Giacomini and White (2006) tests which indicate

superior forecast performance relative to the benchmark. There is no particular forecast method,

however, that appears preferable over the others in terms of mean-squared errors over all sub-

periods. Forecast combination approaches, however, tend to do well in that the Mincer-Zarnowitz

forecast optimality restrictions are in many cases not rejected.

As indicated by the previous in-sample BMA results which include higher order AR terms

(Table 6), many macro-finance predictors receive higher probabilities of inclusion compared to

AR(2) or AR(3) terms. These results indicate that a first-order autoregressive model serves as a

natural candidate benchmark. In the Online Appendix, we also report additional results where

we consider the AR(3) model as an alternative benchmark. Also when higher order autoregressive

benchmarks are considered, the macro-finance augmented forecasting models perform fairly well

in terms of out-of-sample forecast accuracy: Theil’s U is generally smaller than one, the OOS-R2

are sizable and the statistical inference based on the bootstrap and the Giacomini-White test

indicate that forecasts relying on economic variables outperform forecasts by the AR(3) model.

While these benchmarks are admittedly simple, and more sophisticated reduced-form time series

models – which may capture some features of the data better – could potentially generate better

forecasts, we deem it an encouraging success that macro-finance predictors perform generally

well in these simple out-of-sample forecast experiments.
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[Insert Table 9 about here]

OOS Predictability: Multi-asset Class (Short-term): Out-of-sample evaluation results

for the short-term multi asset class sample are reported in Table 9. While these results indicate

that the macro-finance augmented models perform rather well vis-à-vis the AR(1) benchmark,

the results are less favorable compared to the case of the long-term U.S. equity sample. Moreover,

results reported in the Online Appendix (Table IA.10) show less out-of-sample success for macro-

finance augmented models when higher order benchmarks are considered. This echoes results

by Paye (2012) that macro-finance variables are less powerful predictors for equity volatility in

recent data. In the same vein, our results on the differences in predictability of U.S. equity

volatility across the two samples indicate that it is generally useful to rely on long-term data in

order to investigate the predictive power by macro-finance variables.

Dynamic Out-of-Sample Performance. We investigate the dynamics of out-of-sample pre-

dictability for the long-term equity volatility sample in Figure 3. The figure is based on Net-SSE

plots similar to Goyal and Welch (2003, 2008). The graphs show the cumulative sum of squared

forecast errors of the benchmark model minus the squared errors of a forecast model based on

economic variables: Net-SSE(τ) =
∑τ

t=1(e2
b,t− e2

a,t), where eb,t is the forecast error of the bench-

mark (AR(1) or AR(3)), and ea,t is the error of the model of interest. Hence, a positive slope

in the figure indicates a superior performance of the macro-finance augmented model relative to

the benchmark at a particular point in time.

[Insert Figure 3 about here]

The plot of dynamic out-of-sample performance shows an overall very good performance of

the augmented model for U.S. equity volatility for both considered benchmarks. As is well known

from the literature on the predictability of returns (Goyal and Welch, 2008; Timmermann, 2008)

the OOS forecast performance can be fairly variable over time. For instance, models based on

macro-finance predictors performed rather poorly in the late 1990s / early 2000s. Interestingly,

however, macro-finance variables provided informative predictive content beyond autoregressive

benchmarks over the most recent 2007-2009 financial crisis.
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5. Conclusion

This study provides a comprehensive analysis of volatility predictability in financial markets

by economic variables. The main goal is to shed more light on the ultimate economic sources

of financial volatility. Compared to the previous literature, we extend the analysis in three

directions: First, we employ a long sample of stock market volatility and also look at the

volatility of three additional asset classes, namely foreign exchange, bonds, and commodities.

Second, we allow for a comprehensive set of predictive variables which goes far beyond existing

studies in the literature on the economic drivers of volatility. Third, we use comprehensive model

selection and forecast combination procedures to assess whether economic variables are useful

and robust predictors of financial volatility.

We find that there is meaningful information contained in economic variables that helps in

predicting future volatility for all four asset classes under study. Importantly, this predictive

content by economic variables goes beyond the information contained in the history of the time

series of realized volatility. Our results are also supportive of financial volatility predictability

by macroeconomic and financial variables in a realistic out-of-sample setting. The economic

variables that are the most robust predictors of volatility are those that have sensible economic

interpretations. In particular, variables that proxy for credit risk and funding (il)liquidity consis-

tently show up as common predictors of volatility across several asset classes. Variables capturing

time-varying risk premia (such as valuation ratios for equities, or interest rate differentials in

foreign exchange) also perform well as predictors of volatility. In contrast to these financial

predictors, variables that proxy for macroeconomic conditions, are much less informative about

future volatility. Thus, our results suggest that especially channels that emphasize the effects of

leverage, credit risk and funding illiquidity as well as time-variation of risk premia are the most

promising candidates for understanding the economic drivers of financial volatility.
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A. Data Description

[Insert Table A.1 about here]

B. Methodological Details

In this Appendix, we provide some additional details on the Bayesian methods that are underly-

ing the results discussed in the main text. We first describe the elicitation of prior distributions

in the Bayesian Model Averaging (BMA) setup. We then provide some details on the Markov

Chain Monte Carlo Model Composition algorithm (MC3) which is used for sampling from the

set of models M1, ...,M2κ .

B.1. Prior Elicitation

For ease of exposition, we denote the dependent variable by Y , which is a T ×1 vector of realized

volatility as in Eq. (2). The predictive variables are collected in a matrix Zj which has dimension

T × kj depending on the particular model Mj. We are considering a linear regression model

with i.i.d. errors which are assumed to be normal with mean zero and variance σ2. It is common

in the BMA setup to work with the strict exogeneity assumption of the regressors such that a

closed form expression for the likelihood can be derived (See, e.g. Wright, 2008).17

We follow most of the extant BMA literature and choose to work with a natural conjugate

prior distribution for the model parameters p(βj|Mj) and p(σ2). Thus, our prior on the predictive

coefficients βj conditional on σ2 is taken to be a normal distribution

βj|σ2 ∼ N (0, σ2φ(Z ′jZj)
−1), (B.1)

which is centered around zero, i.e. it is expected a-priori that there is no predictive power by the

17Of course, in a time-series setup as the one considered here, strict exogeneity is typically violated. Never-
theless, given that this violation is generally considered to be of minor relevance for the forecasting problem, the
literature (e.g. Stock and Watson, 2004; Wright, 2008; Faust, Gilchrist, Wright, and Zakrajsek, 2011) generally
assumes strict exogeneity, which provides an elegant theoretical framework for model averaging.
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economic variables, and φ is a hyperparameter. A higher φ means a less informative prior (i.e. a

higher prior variance), whereas a lower φ (approaching zero) induces more shrinkage towards the

non-forecastability case. This prior specification is also known as a so-called g-prior framework

and is originally due to Zellner (1986). The prior on the predictive coefficients is proper – an

important feature to obtain meaningful Bayes factors for model comparison – but it is relatively

uninformative, where the amount of informativeness is controlled by the φ hyperparameter. The

prior on σ2 is a standard improper prior, proportional to 1/σ2.

Given these assumptions, the expression for the marginal likelihood takes the following form

p(D|Mj) ∝ (1 + φ)−kj/2S−Tj , (B.2)

where S2
j = Y ′Y − Y ′Zj(Z

′
jZj)

−1Z ′j
φ

1+φ
. The expression in (B.2) is important since it enters

Eq. (4) and thus plays an essential role for the computation of posterior model probabilities

p(Mj|D). Given the likelihood and the prior, the posterior mean of the predictive coefficients

takes the form

βj|D =
φ

1 + φ
(Z ′jZj)

−1Z ′jY. (B.3)

In this BMA setup there are two modeling choices which require input by the researcher.

First, the hyperparameter φ must be selected, which controls the degree of informativeness

of the prior on the predictive coefficients. We select the φ hyperparameter according to the

simulation-based recommendations in Fernandez, Ley, and Steel (2001). The second choice is

that we assign equal prior probability on the models, i.e. we take 1/2κ as the prior model

probability p(Mj). This implies a prior probability of inclusion for each predictive variable of

π = 1/2 as in Faust, Gilchrist, Wright, and Zakrajsek (2011).

B.2. MC3 Algorithm

The MC3 algorithm is a Markov Chain Monte Carlo method of sampling from the distribution

of models and has similarities with a Metropolis-Hastings algorithm. For each run r of the
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algorithm, a candidate model M∗ is drawn from the model space M1, ...,M2κ which can either

be accepted – if it improves on the model drawn in the previous draw M (r−1) – otherwise it is

rejected. If the drawn model is rejected then the chain remains at the previous model M (r−1).

The acceptance probability Ξ(M (r−1),M∗) is expressed as

Ξ(M (r−1),M∗) = min

{
p(D|M∗)p(M∗)

p(D|M (r−1))p(M (r−1))
; 1

}
, (B.4)

and depends on a comparison of the marginal likelihoods of the drawn model vis-a-vis the

previous model of the chain as well as a comparison of the model priors (which are equal in our

case). If the number of Monte Carlo draws is large (in our case 500,000) the fraction of draws

for the different models converges to the posterior model probability. In order to ensure that the

starting value of the chain does not affect the results a burn-in period of 50,000 draws is used.

B.3. Bootstrap Procedure for Out-of-Sample Evaluation

The bootstrap procedure is a model-based wild bootstrap (imposing the null of no predictability

by macro-finance variables) and is a variant of the approach considered in Clark and West (2006).

The wild bootstrap ensures accurate inference in the presence of conditional heteroskedasticity.

In each bootstrap iteration the following steps are performed: (i) A series of i.i.d. standard

normal innovations ηt is drawn. (ii) AR(1) models are fitted for both the dependent variables

RVi;t as well as each of the κ macro-finance variables in zt and the residuals (ε̂t, ν̂t) are saved.

(iii) Artificial bootstrap series RV bs
i;t and zbst are constructed based on the estimated AR(1)

parameters and the innovations ε̂tηt, ν̂tηt. The starting observations of the bootstrap series RV bs
i;0

and zbs0 are drawn randomly from the actual series. (iv) The artificial bootstrap data are used

to generate recursive forecasts based on models relying on the bootstrapped explanatory macro-

finance variables as well as the benchmark AR(1). The corresponding Theil’s U statistics TUbs

are computed. (v) We compute bootstrap p-values as the fraction of times that Theil’s U in the

bootstrap samples is below the one observed in-sample. Hence, these p-values are one-sided and

test the null of equal predictive performance against the alternative of superior performance of

the model including macro-finance predictors vis-a-vis the benchmark. The number of bootstrap

iterations is set to 1,000.
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Figure 1. U.S. equity market volatility over the long-run (1926-2010)
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Notes: This figure shows realized aggregate U.S. stock market volatility over the long-term sample period 12/1926-12/2010. Panel
A shows the level of realized equity market volatility while Panel B shows log realized volatility.
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Figure 2. Volatility - Other Asset Classes (Short-term Sample)
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Notes: This figure shows (log) realized volatility for several asset classes over the short-term sample period from 01/1983-12/2010.
Panel A shows an aggregate measure of foreign exchange market volatility (plots for major rates are shown in the internet appendix),
Panel B shows log realized volatility for U.S. bonds, Panel C shows log realized volatility for the U.S. equity market for a shorter
sample period than Figure 1, Panel D shows the evolution of commodity market volatility calculated from daily returns on the S&P
GSCI index.
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Figure 3. Equity Volatility (Long-Term Sample): Time-Variation of Out-of-Sample Performance
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Notes: The figure shows the time-variation of the out-of-sample performance of forecasts based on the MC3-BMA approach. Net-
SSE is the cumulated difference of squared forecast errors of the benchmark model and the model of interest (BMA): Net-SSE(τ) =∑τ
t=1(e2b,t − e

2
a,t), where eb,t is the forecast error of the benchmark, and ea,t is the error of the model of interest. An increase of

the slope represents a better forecast performance of the forecast model at the particular point in time. Panel A considers an AR(1)
model for realized volatility as the benchmark while Panel B considers an AR(3) benchmark.
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Table 1. Summary Statistics: Realized Volatility

Panel A.

Mean Std. Skew. Kurt. JB p-val. AC(1) AC(2) AC(3)

Stocks (1926-2010) -3.27 0.52 0.72 3.80 0.00 0.78 0.70 0.64

EURUSD -3.58 0.31 0.07 3.36 0.38 0.53 0.42 0.32

JPYUSD -3.58 0.34 0.20 3.56 0.04 0.42 0.34 0.26

GBPUSD -3.67 0.36 0.40 3.25 0.01 0.61 0.56 0.46

CHFUSD -3.49 0.29 0.15 3.52 0.09 0.45 0.38 0.27

FX-Aggr. -4.06 0.39 -0.11 3.36 0.33 0.66 0.58 0.51

Bonds -4.01 0.36 0.00 3.11 0.94 0.58 0.49 0.49

Stocks (1983-2010) -3.22 0.45 0.81 4.44 0.00 0.71 0.63 0.58

Commod. -3.08 0.47 0.35 3.03 0.03 0.77 0.73 0.68

Panel B. Correlations

EURUSD JPYUSD GBPUSD CHFUSD FX-Aggr. Bonds Stocks Commod.

EURUSD 1.00

JPYUSD 0.39 1.00

GBPUSD 0.73 0.23 1.00

CHFUSD 0.88 0.47 0.69 1.00

FX-Aggregate 0.81 0.33 0.82 0.73 1.00

Bonds 0.33 0.14 0.33 0.33 0.34 1.00

Stocks 0.23 0.38 0.14 0.17 0.25 0.32 1.00

Commod. 0.02 0.27 0.02 0.04 0.03 0.04 0.48 1.00

Notes: The table shows summary statistics of realized volatility for stock markets, foreign exchange (FX), bonds, and commodity
markets. The realized volatility series are defined as the log of the square root of the realized variance. The reported statistics in
Panel A include the mean, standard deviation (Std.), Skewness (Skew.), Kurtosis (Kurt.), the p-value from the Jarque-Bera test for
normality (JB p-val.) as well as first (AC(1)), second (AC(2)), and third order (AC(3)) autocorrelation coefficients. Panel B reports
the correlations between the different volatility series. The sample period is from 01/1983-12/2010 with the exception of the equity
market volatility where also statistics based on the long-term sample from 12/1926-12/2010 are reported.
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Table 2. Predictive Regressions for Equity Market Volatility (1926-2010), BMA

Composite Model Post. Post. Top 5 Models

No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.617 0.027 22.95 1 1 1 1 1

2 DEF 1.00 0.117 0.014 8.51 1 1 1 1 1

3 MKT 1.00 -0.051 0.011 -4.53 1 1 1 1 1

4 E-P 0.97 -0.037 0.012 -2.99 1 1 1 1 1

5 STR 0.89 -0.030 0.015 -2.05 0 1 1 1 1

6 T-B 0.07 -0.001 0.005 -0.21 0 1 0 0 0

7 LTR 0.05 -0.001 0.003 -0.17 0 0 1 0 0

8 T-S 0.05 -0.001 0.004 -0.16 0 0 0 1 0

R2
a 0.645 R2 0.645 0.641 0.646 0.646 0.645

R2
b 0.606 R̄2 0.643 0.640 0.644 0.643 0.643

Notes: This table reports in-sample predictability results for U.S. equity market volatility (long-term sample)
obtained from a Bayesian Model Averaging approach with an MC3 algorithm. The results are obtained with a
set of predictors which contains the lagged dependent variable RV(t-1); results based on a benchmark allowing
for higher order AR terms are reported in Table 6. The table displays the results for the 8 best predictors, as
ranked according to the posterior probability of inclusion π|D (sorted in descending order). The table reports
posterior means, standard deviation and BMA t-ratios of the best predictors (reflecting model uncertainty).
Inclusion of the specific variable in the Top 5 models (according to the posterior model probability) is indicated
by 1. R2

a denotes a pseudo-R2 based on the composite Bayesian model, R2
b shows the R2 of the benchmark

model. Unadjusted (adjusted) R2 (R̄2) are reported for the five best model specifications. Table A.1 contains a
description of the abbreviations for the different predictive variables. The sample period is 12/1926-12/2010.
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Table 3. Predictability of Volatility for Several Asset Classes (1983-2010)

Panel A. Composite Model Post. Post. Top 5 Models

Aggregate-FX No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.426 0.062 6.92 1 1 1 1 1

2 AFD 0.99 0.073 0.023 3.16 1 1 1 1 1

3 M1A 0.93 0.072 0.032 2.25 1 1 1 1 1

4 INFA 0.84 0.052 0.032 1.63 1 1 1 1 0

5 TED 0.77 0.044 0.031 1.40 1 1 1 1 1

6 IPM 0.69 -0.043 0.044 -0.98 1 1 0 1 1

7 H-S 0.58 -0.028 0.029 -0.96 0 0 1 1 0

8 INFM 0.34 -0.012 0.021 -0.59 0 1 0 1 0

R2
a 0.545 R2 0.541 0.532 0.540 0.539 0.547

R2
b 0.433 R̄2 0.531 0.523 0.530 0.529 0.536

Panel B. Composite Model Post. Post. Top 5 Models

Bonds No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.413 0.071 5.80 1 1 1 1 1

2 TURN 0.95 -0.049 0.022 -2.23 1 1 1 1 1

3 DEF 0.86 0.060 0.034 1.75 1 1 1 1 1

4 T-S 0.73 0.045 0.035 1.28 0 1 1 1 0

5 TED 0.29 0.012 0.023 0.52 0 1 0 0 0

6 M1A 0.23 0.011 0.025 0.44 0 0 0 0 1

7 C-P 0.21 0.009 0.021 0.42 1 0 0 0 0

8 CAP 0.17 -0.004 0.017 -0.24 0 0 0 1 0

R2
a 0.433 R2 0.422 0.419 0.429 0.428 0.427

R2
b 0.335 R̄2 0.415 0.412 0.420 0.419 0.418

Panel C. Composite Model Post. Post. Top 5 Models

Stocks No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.450 0.064 7.08 1 1 1 1 1

2 D-P 0.96 -0.119 0.041 -2.92 1 1 1 1 1

3 TED 0.92 0.070 0.032 2.17 1 1 1 1 1

4 DEF 0.92 0.095 0.041 2.34 1 1 1 1 1

5 MKT 0.69 -0.042 0.033 -1.25 1 0 1 1 1

6 E-P 0.33 -0.022 0.039 -0.58 1 0 0 0 0

7 MSCI 0.26 -0.012 0.026 -0.48 0 1 0 0 0

8 AFD 0.22 0.009 0.019 0.45 0 0 1 0 0

R2
a 0.591 R2 0.579 0.586 0.576 0.584 0.583

R2
b 0.507 R̄2 0.573 0.578 0.570 0.576 0.576

Panel D. Composite Model Post. Post. Top 5 Models

Commod. No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.596 0.059 10.18 1 1 1 1 1

2 TURN 0.67 -0.028 0.025 -1.14 1 1 0 1 0

3 C-P 0.60 -0.036 0.035 -1.00 1 0 1 1 1

4 T-B 0.55 -0.037 0.040 -0.92 1 0 1 0 1

5 D-P 0.49 -0.031 0.037 -0.83 0 1 0 1 0

6 DIFF 0.44 -0.023 0.031 -0.73 1 0 1 0 1

7 H-S 0.43 -0.021 0.029 -0.73 0 1 0 0 0

8 M1M 0.41 -0.016 0.023 -0.70 0 0 1 0 0

R2
a 0.659 R2 0.656 0.650 0.648 0.648 0.648

R2
b 0.597 R̄2 0.650 0.645 0.643 0.643 0.643

Notes: This table reports in-sample predictability results for aggregate FX volatility (Panel A.), U.S. bond market volatility (Panel B.), equity market

volatility (short-term sample, Panel C.) and commodity market volatility (Panel D.) obtained from a Bayesian Model Averaging approach with a MC3

algorithm. The results are obtained with a set of predictors which contains the lagged dependent variable RV(t-1); results based on a benchmark allowing

for higher order AR terms are reported in the Online Appendix. The table displays the results for the best 8 predictors, as ranked according to the

posterior probability of inclusion π|D (sorted in descending order). The table reports posterior means, standard deviation and BMA t-ratios of the best

predictors (reflecting model uncertainty). Inclusion of the specific variable in the Top 5 models (according to the posterior model probability) is indicated

by 1. R2
a denotes a pseudo-R2 based on the composite Bayesian model, R2

b shows the R2 of the benchmark model (AR(1)). Unadjusted and (adjusted)

R2 (R̄2) are reported for the best 5 model specifications. Table A.1 contains a description of the abbreviations for the different predictive variables. The

sample period is 01/1983-12/2010.

36



Table 4. Equity Market Volatility (1926-2010), Classical Model Selection

Top 3 Models

(i) (ii) (iii)

RV(t-1) 0.62 0.61 0.61

22.73 22.07 22.12

MKT -0.05 -0.06 -0.05

-4.04 -4.17 -4.11

STR -0.03 -0.04

-3.66 -3.75

DEF 0.12 0.11 0.12

9.53 9.44 9.53

E-P -0.04 -0.04 -0.04

-3.71 -4.00 -3.37

T-B -0.01

-1.51

R2 0.645 0.641 0.646

R̄2 0.643 0.640 0.644

BIC -2.285 -2.280 -2.279

Notes: The table shows results of in-sample predictive regressions for U.S. equity market volatility (long-term
sample) based on a classical model selection approach. The results are obtained with a set of predictors which
contains the lagged dependent variable RV(t-1), results based on a benchmark allowing for higher order AR
terms are reported in Table 7. Predictive regressions results for the three top-performing models (based upon the
BIC) are reported. Significant coefficients (at the 5% level based on HAC standard errors) are bold-printed and
the corresponding classical t-statistics are reported below. Unadjusted (adjusted) R2 are reported for the 3 best
model specifications. Table A.1 contains a description of the abbreviations for the different predictive variables.
The sample period is 12/1926-12/2010.
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Table 6. Equity Market Volatility (1926-2010), BMA Results: Higher-order AR terms

Composite Model Post. Post. Top 5 Models

No. Variable π|D Mean STD t-ratio (i) (ii) (iii) (iv) (v)

1 RV(t-1) 1.00 0.456 0.035 13.08 1 1 1 1 1

2 MKT 1.00 -0.065 0.011 -5.91 1 1 1 1 1

3 DEF 1.00 0.077 0.015 5.20 1 1 1 1 1

4 RV(t-2) 1.00 0.178 0.039 4.53 1 1 1 1 1

5 STR 0.99 -0.041 0.011 -3.74 1 1 1 1 1

6 RV(t-3) 0.93 0.102 0.043 2.36 1 0 1 1 1

7 E-P 0.48 -0.012 0.015 -0.83 1 1 0 1 1

8 LTR 0.06 -0.001 0.004 -0.18 0 0 1 0 1

R2
a 0.665 R2 0.663 0.665 0.661 0.664 0.666

R2
b 0.632 R̄2 0.661 0.663 0.659 0.661 0.663

Notes: This table reports in-sample predictability results for U.S. equity market volatility (long-term sample)
obtained from a Bayesian Model Averaging approach with an MC3 algorithm. Additional AR terms (RV(t-2)
and RV(t-3)) are included as predictors in the model search besides one autoregressive lag (RV(t-1)). The table
displays the results for the best 8 predictors, as ranked according to the posterior probability of inclusion π|D
(sorted in descending order). The table reports posterior means, standard deviation and BMA t-ratios of the
best predictors (reflecting model uncertainty). Inclusion of the specific variable in the Top 5 models (according
to the posterior model probability) is indicated by 1. R2

a denotes a pseudo-R2 based on the composite Bayesian
model, R2

b shows the R2 of the benchmark model. Unadjusted (adjusted) R2 are reported for the 5 best model
specifications. Table A.1 contains a description of the abbreviations for the different predictive variables. The
sample period is 12/1926-12/2010.
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Table 7. Equity Market Volatility (1926-2010), Classical Model Selection: Higher-order AR terms

Top 3 Models

(i) (ii) (iii)

RV(t-1) 0.46 0.45 0.47

12.57 12.50 14.14

RV(t-2) 0.18 0.17 0.22

4.52 4.42 6.32

RV(t-3) 0.11 0.10

3.82 3.47

MKT -0.06 -0.07 -0.06

-5.02 -5.11 -4.93

STR -0.04 -0.04 -0.04

-4.54 -4.29 -4.12

DEF 0.07 0.08 0.09

6.08 6.43 7.36

E-P -0.03 -0.03

-2.57 -3.01

R2 0.663 0.665 0.661

R̄2 0.661 0.663 0.659

BIC -2.330 -2.330 -2.326

Notes: The table shows results of in-sample predictive regressions for U.S. equity market volatility (long-term
sample) based on a classical model selection approach. Additional AR terms (RV(t-2) and RV(t-3)) are included
as predictors besides one autoregressive term of the dependent variable (RV(t-1)). Predictive regressions results
for the three top-performing models (based upon the BIC) are reported. Significant coefficients (at the 5% level
based on HAC standard errors) are bold-printed and the corresponding classical t-statistics are reported below.
Unadjusted (adjusted) R2 are reported for the 3 best model specifications. Table A.1 contains a description of
the abbreviations for the different predictive variables. The sample period is 12/1926-12/2010.
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Table 8. Out-of-Sample Forecast Evaluation: Equity Volatility (Long-term sample)

BIC AIC R2 BMA MC3 EW

Start: 01/1937

Theil’s U 0.970 0.969 0.970 0.965 0.966 0.962

#T̂U bs < T̂U 0.00 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.059 0.062 0.059 0.069 0.068 0.074

GW stat. 2.44 2.26 2.10 3.13 3.01 3.52

MZ GLS p-val. 0.08 0.00 0.00 0.16 0.13 0.35

Start: 01/1957

Theil’s U 0.990 0.988 0.987 0.985 0.985 0.979

#T̂U bs < T̂U 0.00 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.019 0.023 0.027 0.031 0.029 0.041

GW stat. 0.65 0.74 0.84 1.16 1.08 1.70

MZ GLS p-val. 0.23 0.01 0.00 0.39 0.33 0.68

Start: 01/1977

Theil’s U 0.973 0.973 0.970 0.973 0.973 0.973

#T̂U bs < T̂U 0.00 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.053 0.054 0.058 0.054 0.053 0.054

GW stat. 1.88 1.87 2.02 2.00 1.98 2.05

MZ GLS p-val. 0.05 0.00 0.00 0.06 0.06 0.05

Notes: The table shows the results from the evaluation of out-of-sample forecasts based on various forecasting approaches: i)

forecasts based on the model with the lowest Schwarz criterion at the forecast date (BIC), ii) forecast based on the model with the

lowest Akaike criterion at the forecast date (AIC), iii) forecast from the model with highest adjusted R2, iv) forecast from a BMA

approach with analytical evaluation of posterior model probabilities, v) BMA forecasts based on the MC3 sampling algorithm and

vi) an equally weighted forecast of all evaluated models (EW). OOS results for different start dates of the forecasting scheme are

provided. The reported statistics include Theil’s U which is the ratio of the RMSE of the model of interest and the RMSE of the

benchmark model (TU), the out-of-sample R2 of Campbell and Thompson (2008). #TUbs<TU denotes the bootstrap p-value for

testing equal predictive performance of the macro-finance augmented model and the AR(1) benchmark against the alternative of

superior performance of the model including macro-finance predictors. The bootstrap procedure follows a model-based wild bootstrap

methodology as described in section B.3 of the appendix. MZ GLS denotes the GLS version of the Mincer-Zarnowitz statistic and

GW stat. denotes the test statistic by Giacomini and White (2006).
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Table 9. Out-of-Sample Forecast Evaluation: Several Asset Classes (Short-term sample)

BIC AIC R2 BMA MC3 EW

FX-Aggregate:

Theil’s U 0.948 0.943 0.950 0.960 0.967 0.942

#T̂Ubs < T̂U 0.00 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.102 0.112 0.097 0.079 0.065 0.112

GW stat. 1.64 1.72 1.49 1.45 0.86 2.01

MZ GLS p-val. 0.00 0.00 0.00 0.00 0.03 0.00

Bonds:

Theil’s U 0.969 0.959 0.969 0.961 0.972 0.954

#T̂Ubs < T̂U 0.00 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.061 0.081 0.061 0.076 0.054 0.090

GW stat. 1.14 1.31 1.00 1.63 1.10 1.76

MZ GLS p-val. 0.06 0.07 0.09 0.03 0.06 0.17

Stocks:

Theil’s U 0.998 0.967 0.960 0.976 1.010 0.972

#T̂Ubs < T̂U 0.06 0.00 0.00 0.00 0.49 0.00

R2
OOS 0.004 0.066 0.078 0.048 -0.020 0.056

GW stat. 0.07 0.91 1.01 0.90 -0.23 1.03

MZ GLS p-val. 0.00 0.00 0.00 0.02 0.00 0.01

Commodities:

Theil’s U 0.971 0.951 0.944 0.942 0.971 0.957

#T̂Ubs < T̂U 0.01 0.00 0.00 0.00 0.00 0.00

R2
OOS 0.058 0.096 0.108 0.113 0.058 0.085

GW stat. 1.60 2.49 2.49 3.34 1.72 2.68

MZ GLS p-val. 0.00 0.00 0.00 0.01 0.00 0.00

Notes: The table shows the results from the evaluation of out-of-sample forecasts based on various forecasting approaches: i) forecasts

based on the model with the lowest Schwarz criterion at the forecast date (BIC), ii) forecast based on the model with the lowest

Akaike criterion at the forecast date (AIC), iii) forecast from the model with highest adjusted R2, iv) forecast from a BMA approach

with analytical evaluation of posterior model probabilities, v) BMA forecasts based on the MC3 sampling algorithm and vi) an

equally weighted forecast of all evaluated models (EW). Results for different start dates of the forecasting scheme are provided: The

forecasts start in 02/1993 after an initialization period of 10 years. The reported statistics include Theil’s U which is the ratio of

the RMSE of the model of interest and the RMSE of the benchmark model (TU), the out-of-sample R2 of Campbell and Thompson

(2008). #TUbs<TU denotes the bootstrap p-value for testing equal predictive performance of the macro-finance augmented model

and the AR(1) benchmark against the alternative of superior performance of the model including macro-finance predictors. The

bootstrap procedure follows a model-based wild bootstrap methodology as described in section B.3 of the appendix. MZ GLS denotes

the GLS version of the Mincer-Zarnowitz statistic and GW stat denotes the test statistic by Giacomini and White (2006).
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Table A.1. Overview of Predictive Variables

No. Variable Abbrev. Mean Std. Skew. Kurt. AC(1)

A. Equity Market Variables and Risk Factors
1 Dividend Price Ratio (Log) (*, †) D-P -3.76 0.39 -0.02 1.88 0.99
2 Earnings Price Ratio (Log) (*, †) E-P -3.02 0.43 -1.31 6.49 0.98
3 US Market Excess Return (†) MKT 0.59 4.57 -0.91 5.77 0.10
4 Size Factor (†) SMB 0.12 3.23 0.81 11.44 -0.03
5 Value Factor (†) HML 0.35 3.15 0.05 5.54 0.14
6 Short Term Reversal Factor (†) STR 0.37 3.44 0.17 8.34 -0.02
7 S&P500 Turnover TURN 0.01 0.16 -0.07 3.38 -0.51
8 Return MSCI World MSCI 0.73 4.26 -1.20 6.44 0.13

B. Interest Rates, Spreads and Bond Market Factors
9 T-Bill Rate (Level) (*,†) T-B 4.56 2.52 -0.02 2.37 1.00
10 Rel. T-Bill Rate (†) RTB -0.18 0.86 -0.30 2.85 0.95
11 Long Term Bond Return (*,†) LTR 0.81 2.97 0.20 4.78 0.02
12 Rel. Bond Rate (†) RBR -0.18 0.63 -0.36 4.49 0.87
13 Term Spread (*,†) T-S 2.33 1.25 -0.25 1.95 0.96
14 Cochrane Piazzesi Factor C-P 1.22 1.56 0.41 3.34 0.90

C. FX Variables and Risk Factors
15 Dollar Risk Factor DOL 0.12 2.19 -0.34 4.02 0.12
16 Carry Trade Factor C-T 0.05 2.58 -0.69 4.38 0.18
17 Average Forward Discount AFD 0.18 0.19 0.87 7.83 0.75

D. Liquidity and Credit Risk Variables
18 Default Spread (*,†) DEF 0.11 0.43 2.48 12.30 0.94
19 FX Average Bid-ask Spread BAS 1.43 5.00 1.92 7.46 0.88
20 Pastor-Stambaugh Liquidity Factor PS -0.28 6.83 -1.76 10.49 0.00
21 TED Spread TED 0.07 0.00 1.78 8.67 0.81

E. Macroeconomic Variables
22 Inflation Rate, Monthly (*,†) INFM 0.24 0.31 -1.38 11.31 0.47
23 Inflation Rate, YoY INFA 2.91 1.26 -0.48 4.41 0.95
24 Industrial Production Growth, Monthly IPM 0.20 0.66 -1.32 10.18 0.23
25 Industrial Production Growth, YoY IPA 2.24 4.35 -1.60 7.45 0.98
26 Housing Starts H-S -2.20 24.90 -0.04 4.52 0.79
27 M1 Growth, Monthly M1M 0.40 0.79 1.51 13.79 0.18
28 M1 Growth, YoY M1A 4.81 4.98 0.29 2.31 0.98
29 Orders, Monthly ORDM 0.11 1.78 0.00 3.15 -0.19
30 Orders, YoY ORDA 1.20 6.93 -1.51 8.49 0.93
31 Return CRB Spot CRB 0.25 2.74 -1.76 17.62 0.25
32 Capacity Utilization CAP 0.02 0.66 -1.07 8.95 0.25
33 Employment Growth EMPL 0.11 0.19 -0.37 7.40 0.65
34 Consumer Sentiment SENT 0.01 4.70 0.07 5.66 0.00
35 Consumer Confidence CONF 0.02 8.25 -0.29 9.94 0.07
36 Diffusion Index DIFF 8.68 16.91 -0.64 3.57 0.83
37 Chicago PM Business Barometer PMBB 55.15 7.33 -0.37 3.37 0.88
38 ISM PMI PMI 52.08 5.35 -0.39 3.77 0.93

Notes: The table shows the summary statistics for the macro-finance predictive variables. The reported statistics include the mean, standard deviation
(Std.), Skewness (Skew.), Kurtosis (Kurt.), as well as the first order autocorrelation coefficient (AC(1)). An asterisk (*) denotes that the variable is also
part of the Goyal and Welch (2008) dataset, † denotes that the variable is included in set of predictors in case of the long-term U.S. equity sample from
12/1926-12/2010. The sample period over which the summary statistics for the predictors are computed is from 01/1983-12/2010.
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